190 research outputs found

    Genetic structure and domestication history of the grape

    Get PDF
    The grape is one of the earliest domesticated fruit crops and, since antiquity, it has been widely cultivated and prized for its fruit and wine. Here, we characterize genome-wide patterns of genetic variation in over 1,000 samples of the domesticated grape, Vitis vinifera subsp. vinifera, and its wild relative, V. vinifera subsp. sylvestris from the US Department of Agriculture grape germ-plasm collection. We find support for a Near East origin of vinifera and present evidence of introgression from local sylvestris as the grape moved into Europe. High levels of genetic diversity and rapid linkage disequilibrium (LD) decay have been maintained in vinifera, which is consistent with a weak domestication bottleneck followed by thousands of years of widespread vegetative propagation. The considerable genetic diversity within vinifera, however, is contained within a complex network of close pedigree relationships that has been generated by crosses among elite cultivars. We show that first-degree relationships are rare between wine and table grapes and among grapes from geographically distant regions. Our results suggest that although substantial genetic diversity has been maintained in the grape subsequent to domestication, there has been a limited exploration of this diversity. We propose that the adoption of vegetative propagation was a double-edged sword: Although it provided a benefit by ensuring true breeding cultivars, it also discouraged the generation of unique cultivars through crosses. The grape currently faces severe pathogen pressures, and the long-term sustainability of the grape and wine industries will rely on the exploitation of the grape's tremendous natural genetic diversity

    Genetic structure and differentiation in cultivated fig (Ficus carica L.)

    Get PDF
    One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (HG/HT = 0.853; 85.3%) and the among groups within total component (GGT = 0.147) accounted for the remaining 14.7%, of which ~64% accounted for among groups within clusters (GGC = 0.094) and ~36% among clusters (GCT = 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and ~10% among groups within clusters, and ~3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation with widespread dispersal of cultivars with many synonyms has resulted in a great deal of confusion in the identification and classification of cultivars in fig

    Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight

    Get PDF
    Indexación: Web of Science; PubMedBackground Berry size is considered as one of the main selection criteria in table grape breeding programs. However, this is a quantitative and polygenic trait, and its genetic determination is still poorly understood. Considering its economic importance, it is relevant to determine its genetic architecture and elucidate the mechanisms involved in its expression. To approach this issue, an RNA-Seq experiment based on Illumina platform was performed (14 libraries), including seedless segregants with contrasting phenotypes for berry weight at fruit setting (FST) and 6–8 mm berries (B68) phenological stages. Results A group of 526 differentially expressed (DE) genes were identified, by comparing seedless segregants with contrasting phenotypes for berry weight: 101 genes from the FST stage and 463 from the B68 stage. Also, we integrated differential expression, principal components analysis (PCA), correlations and network co-expression analyses to characterize the transcriptome profiling observed in segregants with contrasting phenotypes for berry weight. After this, 68 DE genes were selected as candidate genes, and seven candidate genes were validated by real time-PCR, confirming their expression profiles. Conclusions We have carried out the first transcriptome analysis focused on table grape seedless segregants with contrasting phenotypes for berry weight. Our findings contributed to the understanding of the mechanisms involved in berry weight determination. Also, this comparative transcriptome profiling revealed candidate genes for berry weight which could be evaluated as selection tools in table grape breeding programs.http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0789-

    Cryogenic Memory Architecture Integrating Spin Hall Effect based Magnetic Memory and Superconductive Cryotron Devices

    Full text link
    One of the most challenging obstacles to realizing exascale computing is minimizing the energy consumption of L2 cache, main memory, and interconnects to that memory. For promising cryogenic computing schemes utilizing Josephson junction superconducting logic, this obstacle is exacerbated by the cryogenic system requirements that expose the technology's lack of high-density, high-speed and power-efficient memory. Here we demonstrate an array of cryogenic memory cells consisting of a non-volatile three-terminal magnetic tunnel junction element driven by the spin Hall effect, combined with a superconducting heater-cryotron bit-select element. The write energy of these memory elements is roughly 8 pJ with a bit-select element, designed to achieve a minimum overhead power consumption of about 30%. Individual magnetic memory cells measured at 4 K show reliable switching with write error rates below 10610^{-6}, and a 4x4 array can be fully addressed with bit select error rates of 10610^{-6}. This demonstration is a first step towards a full cryogenic memory architecture targeting energy and performance specifications appropriate for applications in superconducting high performance and quantum computing control systems, which require significant memory resources operating at 4 K.Comment: 10 pages, 6 figures, submitte

    Digitally strengthened, midwife-led intervention to reach the unreached mothers across ten conflict-prone provinces of Afghanistan during humanitarian crisis

    Get PDF
    Background: Coronavirus disease 2019 (COVID-19) pandemic had significant negative impact on sexual and reproductive health (SRH) with devastating impact on pregnant women in resource constrain humanitarian settings. This paper provides detailed account of a community midwife-led intervention in ten humanitarian settings of Afghanistan using world health organization (WHO) emergency disaster risk management (EDRM) framework.Objectives: The project is aimed at increasing access to Integrated Package of Essential SRH Services and Minimal Initial Service Package (MISP) with a specific focus on prevention of Postpartum Haemorrhage (PPH) and screening and management of preeclampsia and eclampsia.Methods: The project was implemented through 150 Community outreach midwives (COMs). Each midwife served 300 households; mentored by gynaecologists and supervisors. Midwives were trained through a digitally enabled, simulation based training and equipped with a set of off-the shelf devices and kits.Results: During COVID-19 pandemic and in absence of health care services during crisis, this intervention has played as a lifesaving intervention for the community in Afghanistan. Variable digital literacy, sociocultural barriers, reluctance in adapting to digital platforms, security and uncertainties were some of the challenges faced. Adaptation of outreach methods integrated high impactful digital technologies has been the most appropriate strategy "to reach the unreached".Conclusion: Through this model, national and global stakeholders were engaged even during the crisis in Afghanistan. It also provided vital inputs for the donors, governments, civil society organizations and other stakeholders for sustaining and advancing the delivery of quality SRH services in humanitarian settings

    Meeting human resources for health staffing goals by 2018: a quantitative analysis of policy options in Zambia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ministry of Health (MOH) in Zambia is currently operating with fewer than half of the health workers required to deliver basic health services. The MOH has developed a human resources for health (HRH) strategic plan to address the crisis through improved training, hiring, and retention. However, the projected success of each strategy or combination of strategies is unclear.</p> <p>Methods</p> <p>We developed a model to forecast the size of the public sector health workforce in Zambia over the next ten years to identify a combination of interventions that would expand the workforce to meet staffing targets. The key forecasting variables are training enrolment, graduation rates, public sector entry rates for graduates, and attrition of workforce staff. We model, using Excel (Office, Microsoft; 2007), the effects of changes in these variables on the projected number of doctors, clinical officers, nurses and midwives in the public sector workforce in 2018.</p> <p>Results</p> <p>With no changes to current training, hiring, and attrition conditions, the total number of doctors, clinical officers, nurses, and midwives will increase from 44% to 59% of the minimum necessary staff by 2018. No combination of changes in staff retention, graduation rates, and public sector entry rates of graduates by 2010, without including training expansion, is sufficient to meet staffing targets by 2018 for any cadre except midwives. Training enrolment needs to increase by a factor of between three and thirteen for doctors, three and four for clinical officers, two and three for nurses, and one and two for midwives by 2010 to reach staffing targets by 2018. Necessary enrolment increases can be held to a minimum if the rates of retention, graduation, and public sector entry increase to 100% by 2010, but will need to increase if these rates remain at 2008 levels.</p> <p>Conclusions</p> <p>Meeting the minimum need for health workers in Zambia this decade will require an increase in health training school enrolment. Supplemental interventions targeting attrition, graduation and public sector entry rates can help close the gap. HRH modelling can help MOH policy makers determine the relative priority and level of investment needed to expand Zambia's workforce to target staffing levels.</p

    iWorksafe: Towards Healthy Workplaces During COVID-19 With an Intelligent Phealth App for Industrial Settings

    Get PDF
    The recent outbreak of the novel Coronavirus Disease (COVID-19) has given rise to diverse health issues due to its high transmission rate and limited treatment options. Almost the whole world, at some point of time, was placed in lock-down in an attempt to stop the spread of the virus, with resulting psychological and economic sequela. As countries start to ease lock-down measures and reopen industries, ensuring a healthy workplace for employees has become imperative. Thus, this paper presents a mobile app-based intelligent portable healthcare (pHealth) tool, called i WorkSafe, to assist industries in detecting possible suspects for COVID-19 infection among their employees who may need primary care. Developed mainly for low-end Android devices, the i WorkSafe app hosts a fuzzy neural network model that integrates data of employees’ health status from the industry’s database, proximity and contact tracing data from the mobile devices, and user-reported COVID-19 self-test data. Using the built-in Bluetooth low energy sensing technology and K Nearest Neighbor and K-means techniques, the app is capable of tracking users’ proximity and trace contact with other employees. Additionally, it uses a logistic regression model to calculate the COVID-19 self-test score and a Bayesian Decision Tree model for checking real-time health condition from an intelligent e-health platform for further clinical attention of the employees. Rolled out in an apparel factory on 12 employees as a test case, the pHealth tool generates an alert to maintain social distancing among employees inside the industry. In addition, the app helps employees to estimate risk with possible COVID-19 infection based on the collected data and found that the score is effective in estimating personal health condition of the app user
    corecore